Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Dev Neurosci ; 30(2): 69-74, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22244886

RESUMO

The influence of physical exercise on the effects elicited by homocysteine on glutamate uptake and some parameters of oxidative stress, namely thiobarbituric acid-reactive substances, 2',7'-dichlorofluorescein (H(2)DCF) oxidation, as well as enzymatic antioxidant activities, superoxide dismutase, catalase and glutathione peroxidase in rat cerebral cortex were investigated. Wistar rats received subcutaneous administration of homocysteine or saline (control) from the 6th to 29th day of life. The physical exercise was performed from the 30th to 60th day of life; 12 h after the last exercise session animals were sacrificed and the cerebral cortex was dissected out. It is shown that homocysteine reduces glutamate uptake increases thiobarbituric acid-reactive substances and disrupts enzymatic antioxidant defenses in cerebral cortex. Physical activity reversed the homocysteine effects on glutamate uptake and on antioxidant enzymes activities; although the increase in thiobarbituric acid-reactive substances was only partially reversed by exercise. These findings allow us to suggest that physical exercise may have a protective role against homocysteine-induced oxidative imbalance and brain damage to the glutamatergic system.


Assuntos
Encefalopatias Metabólicas/terapia , Terapia por Exercício/métodos , Ácido Glutâmico/metabolismo , Hiper-Homocisteinemia/terapia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Animais Recém-Nascidos , Encefalopatias Metabólicas/fisiopatologia , Modelos Animais de Doenças , Hiper-Homocisteinemia/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
2.
Mol Cell Biochem ; 361(1-2): 281-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22012612

RESUMO

Methylphenidate (MPH), a psychostimulant that affects both dopaminergic and noradrenergic systems, is one of the most frequently prescribed treatments for attention-deficit hyperactivity disorder. The present study investigated the effects of chronic administration of MPH on some parameters of oxidative stress, as well as on butyrylcholinesterase (BuChE) activity in blood of young rats. Rats received intraperitoneal injections of MPH (2.0 mg/kg) once a day, from the 15th to the 45th day of age or an equivalent volume of 0.9% saline solution (controls). Two hours after the last injection, animals were euthanized, and blood was collected. Results demonstrated that MPH did not alter the dichlorofluorescein formed, decreased both thiobarbituric acid reactive substances and total non-enzymatic radical-trapping antioxidant, and increased superoxide dismutase and catalase activities, suggesting that this psychostimulant may alter antioxidant defenses. BuChE activity was increased in blood of juvenile rats subjected to chronic MPH administration. These findings suggest that MPH may promote peripheral oxidative adaptations and cholinergic changes.


Assuntos
Antioxidantes/metabolismo , Butirilcolinesterase/sangue , Estimulantes do Sistema Nervoso Central/farmacologia , Metilfenidato/farmacologia , Animais , Catalase/sangue , Estimulantes do Sistema Nervoso Central/efeitos adversos , Glutationa Peroxidase/sangue , Metilfenidato/efeitos adversos , Nitritos/sangue , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/sangue , Superóxido Dismutase/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
3.
Mol Cell Biochem ; 360(1-2): 205-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948259

RESUMO

In the present study, we investigated the effect of the acute administration of homocysteine (Hcy) on parameters of the coagulation system, as well as fibrinogen and nitrite levels in the blood of rats. In addition, we evaluated the effect of acute hyperhomocysteinemia on thiobarbituric acid-reactive substances in plasma and on antioxidant enzymes activities (superoxide dismutase, catalase, and gluthatione peroxidase) in the erythrocytes of rats. Wistar rats, aged 29 days, received a single subcutaneous dorsal injection of saline (control) or Hcy (0.6 µmol/g body weight). Fifteen minutes, 1 h, 6 h or 12 h after the injection, the rats were euthanized and the blood, plasma, and erythrocytes were collected. Results showed that Hcy significantly increased platelet count in the blood and plasma fibrinogen levels of rats at 15 min and 1 h, but not at 6 h and 12 h, when compared with the control group. Prothrombin time, activated partial thromboplastin time, and nitrite levels significantly decreased in plasma at 15 min and 1 h, but not at 6 h and 12 h after Hcy administration. In addition, hyperhomocysteinemia increased thiobarbituric acid-reactive, an index of lipid peroxidation, in plasma at 15 min and 1 h; decreased the superoxide dismutase and gluthatione peroxidase activity, and increased the catalase activity at 15 min in erythrocytes of rats, suggesting that acute Hcy administration may alter the oxidative status in the blood of rats. Our findings suggest that hypercoagulability and oxidative stress can occur after acute hyperhomocysteinemia, possibly in association, at least in part, with the vascular dysfunction and thromboembolic complications observed in homocystinuric patients.


Assuntos
Coagulação Sanguínea , Hiper-Homocisteinemia/sangue , Estresse Oxidativo , Animais , Catalase/sangue , Eritrócitos/enzimologia , Fibrinogênio/metabolismo , Glutationa Peroxidase/sangue , Nitritos/sangue , Tempo de Tromboplastina Parcial , Contagem de Plaquetas , Tempo de Protrombina , Ratos , Ratos Wistar , Superóxido Dismutase/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
Int J Dev Neurosci ; 29(7): 693-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21704148

RESUMO

The purpose of this study was to develop a chronic chemically induced model of mild hyperhomocysteinemia in adult rats. We produced levels of Hcy in the blood (30µM), comparable to those considered a risk factor for the development of neurological and cardiovascular diseases, by injecting homocysteine subcutaneously (0.03µmol/g of body weight) twice a day, from the 30th to the 60th postpartum day. Controls received saline in the same volumes. Using this model, we evaluated the effect of chronic administration of homocysteine on redox status in the blood and cerebral cortex of adult rats. Reactive oxygen species and thiobarbituric acid reactive substances were significantly increased in the plasma and cerebral cortex, while nitrite levels were reduced in the cerebral cortex, but not in the plasma, of rats subjected to chronic mild hyperhomocysteinemia. Homocysteine was also seen to disrupt enzymatic and non-enzymatic antioxidant defenses in the blood and cerebral cortex of rats. Since experimental animal models are useful for understanding the pathophysiology of human diseases, the present model of mild hyperhomocysteinemia may be useful for the investigation of additional mechanisms involved in tissue alterations caused by homocysteine.


Assuntos
Modelos Animais de Doenças , Homocisteína/administração & dosagem , Homocisteína/farmacologia , Hiper-Homocisteinemia/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Homocisteína/sangue , Humanos , Nitritos/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
J Neural Transm (Vienna) ; 117(9): 1067-76, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20686907

RESUMO

Depressive disorders, including major depression, are serious and disabling, whose mechanisms are not clearly understood. Since life stressors contribute in some fashion to depression, chronic variable stress (CVS) has been used as an animal model of depression. In the present study we evaluated some parameters of oxidative stress [thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], and inflammatory markers (interleukin 6, C reactive protein, tumor necrosis factor-alpha and nitrites), as well as the activity of butyrylcholinesterase in blood of rats subjected to chronic stress. Homocysteine and folate levels also were measured. Stressed animals were submitted to different mild stressors for 40 days. After CVS, a reduction in weight gain was observed in the stressed group, as well as an increase in immobility time in the forced swimming test as compared with controls. Stressed animals presented a significant increase on TBARS and SOD/CAT ratio, but stress did not alter GPx activity and any inflammatory parameters studied. CVS caused a significant inhibition on serum butyrylcholinesterase activity. Stressed rats had higher plasmatic levels of homocysteine without differences in folate levels. Although it is difficult to extrapolate our findings to the human condition, the alterations observed in this work may be useful to help to understand, at least in part, the pathophysiology of depressive disorders.


Assuntos
Butirilcolinesterase/metabolismo , Depressão/metabolismo , Estresse Oxidativo/fisiologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Proteína C-Reativa/metabolismo , Catalase/sangue , Glutationa Peroxidase/sangue , Imunoensaio , Interleucina-6/sangue , Masculino , Ratos , Ratos Wistar , Superóxido Dismutase/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Necrose Tumoral alfa/sangue
6.
Metab Brain Dis ; 25(2): 161-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20437088

RESUMO

In the present study we investigated the effect of acute hyperprolinemia on some parameters of energy metabolism, including the activities of succinate dehydrogenase and cytocrome c oxidase and (14)CO(2) production from glucose and acetate in cerebral cortex of young rats. Lipid peroxidation determined by the levels of thiobarbituric acid-reactive substances, as well as the influence of the antioxidants alpha-tocopherol plus ascorbic acid on the effects elicited by Pro on enzyme activities and on the lipid peroxidation were also evaluated. Wistar rats of 12 and 29 days of life received one subcutaneous injection of saline or proline (12.8 or 18.2 micromol/g body weight, respectively) and were sacrificed 1 h later. In another set of experiments, 5- and 22-day-old rats were pretreated for a week with daily intraperitoneal administration of alpha-tocopherol (40 mg/kg) plus ascorbic acid (100 mg/kg) or saline. Twelve hours after the last injection, rats received one injection of proline or saline and were sacrificed 1 h later. Results showed that acute administration of proline significantly reduced cytochrome c oxidase activity and increased succinate dehydrogenase activity and (14)CO(2) production in cerebral cortex, suggesting that Pro might disrupt energy metabolism in brain of young rats. In addition, proline administration increased the thiobarbituric acid-reactive substances levels, which were prevented by antioxidants. These findings suggest that mitochondrial dysfunction and oxidative stress may be important contributors to the neurological dysfunction observed in some hyperprolinemic patients and that treatment with antioxidants may be beneficial in this pathology.


Assuntos
Encefalopatias Metabólicas/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Metabolismo Energético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Prolina/efeitos adversos , Fatores Etários , Envelhecimento/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Encefalopatias Metabólicas/induzido quimicamente , Córtex Cerebral/crescimento & desenvolvimento , Modelos Animais de Doenças , Sinergismo Farmacológico , Metabolismo Energético/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Estresse Oxidativo/fisiologia , Prolina/metabolismo , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , alfa-Tocoferol/farmacologia , alfa-Tocoferol/uso terapêutico
7.
Metab Brain Dis ; 24(3): 469-79, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19707861

RESUMO

We have demonstrated that acute arginine administration decreases antioxidant defenses and compromises enzymes of respiratory chain in rat brain. In this study we evaluated in vivo and in vitro effect of arginine on pyruvate kinase activity, as well as its effect on an important parameter of oxidative stress namely thiobarbituric acid-reactive substances (TBA-RS) in cerebrum of rats. We also tested the influence of antioxidants, namely alpha -tocopherol plus ascorbic acid on the effects elicited by arginine in order to investigate the possible participation of free radicals on the effects of arginine on these parameters. Results showed that arginine acute administration inhibited pyruvate kinase activity in cerebrum of rats, as well as increased TBA-RS. By the other hand, arginine added to the incubation medium, in vitro studies, did not alter these parameters in rat cerebrum. In addition, pretreatment with antioxidants prevented the reduction of pyruvate kinase activity and the increase of TBA-RS caused by arginine. The data indicate that acute administration of arginine induces lipid peroxidation in rat cerebrum and that the inhibition of pyruvate kinase activity caused by this amino acid was probably mediated by free radicals since antioxidants prevented such effect. It is presumed that these results might be associated, at least in part, with the neuronal dysfunction of patients affected by hyperargininemia. Finally, we suggest that the administration of antioxidants should be considered as an adjuvant therapy to specific diets in hyperargininemia.


Assuntos
Antioxidantes/farmacologia , Arginina/toxicidade , Encéfalo/patologia , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Piruvato Quinase/metabolismo , Animais , Ácido Ascórbico/farmacologia , Encéfalo/enzimologia , Dieta , Radicais Livres/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Piruvato Quinase/antagonistas & inibidores , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vitamina E/farmacologia
8.
Brain Res ; 1193: 120-7, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18190896

RESUMO

We have previously demonstrated that acute arginine administration induces oxidative stress and compromises energy metabolism in rat hippocampus. In the present study, we initially investigated the effect of intracerebroventricular infusion of arginine (0.1, 0.5 and 1.5 mM solution) on Na(+),K(+)-ATPase activity and on some parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBA-RS) and total radical-trapping antioxidant parameter (TRAP) in the hippocampus of rats. Results showed that 1.5 mM arginine solution significantly increases TBA-RS and reduces Na(+),K(+)-ATPase activity and TRAP in the rat hippocampus. We also evaluated the influence of the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), and antioxidants, namely alpha-tocopherol plus ascorbic acid, on the effects elicited by arginine on Na(+),K(+)-ATPase activity, TBA-RS and TRAP. Results showed that treatment with alpha-tocopherol plus ascorbic acid per se did not alter these parameters but prevented these effects. Furthermore, intracerebroventricular infusion of L-NAME prevented the inhibition caused by arginine on Na(+),K(+)-ATPase activity, as well as the increased of TBA-RS. Our findings indicate that intracerebroventricular infusion of arginine induces oxidative stress in rat hippocampus and that the inhibition of Na(+),K(+)-ATPase activity caused by this amino acid was probably mediated by NO and/or its derivatives ONOO(-) and/or other free radicals. Finally, we suggest that the administration of antioxidants should be considered as an adjuvant therapy to specific diets in hyperargininemia.


Assuntos
Antioxidantes/uso terapêutico , Lesões Encefálicas/prevenção & controle , Inibidores Enzimáticos/uso terapêutico , NG-Nitroarginina Metil Éster/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Amidinas/metabolismo , Análise de Variância , Animais , Arginina/administração & dosagem , Ácido Ascórbico/uso terapêutico , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares/métodos , Masculino , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , alfa-Tocoferol/uso terapêutico
9.
Life Sci ; 81(25-26): 1645-50, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18022201

RESUMO

In the present study we first investigated the in vitro and in vivo effects of proline on glutamate uptake in the cerebral cortex and hippocampus slices of rats. The action of alpha-tocopherol and/or ascorbic acid on the effects elicited by administration of proline was also evaluated. For in vitro studies, proline (30.0 microM and 1.0 mM) was added to the incubation medium. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 micromol/g body weight) or saline (control) and were sacrificed 1 h later. Results showed that addition of proline in the assay (in vitro studies) reduces glutamate uptake in both cerebral structures. Administration of proline (in vivo studies) reduces glutamate uptake in the cerebral cortex, but not in the hippocampal slices of rats. In another set of experiments, 22-day-old rats were pretreated for one week with daily administration of alpha-tocopherol (40 mg/kg) or ascorbic acid (100 mg/kg) or with both vitamins. Twelve hours after the last vitamins injection, rats received a single injection of proline or saline and were killed 1 h later. Pretreatment with alpha-tocopherol and/or ascorbic acid did not prevent the effect of proline administration on glutamate uptake. alpha-Tocopherol plus ascorbic acid prevented the inhibitory effect of acute hyperprolinemia on Na(+),K(+) -ATPase activity in the cerebral cortex of 29-day-old rats. The data indicate that the effect of proline on reduction of glutamate uptake and Na(+),K(+) -ATPase activity may be, at least in part, involved in the brain dysfunction observed in hyperprolinemic patients.


Assuntos
Córtex Cerebral/metabolismo , Glutamatos/metabolismo , Hipocampo/metabolismo , Prolina/metabolismo , Análise de Variância , Animais , Ácido Ascórbico/administração & dosagem , Técnicas In Vitro , Injeções Subcutâneas , Prolina/administração & dosagem , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo , alfa-Tocoferol/administração & dosagem
10.
Metab Brain Dis ; 22(2): 145-55, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17516157

RESUMO

In the present study we evaluated the in vivo effect of arginine on CO(2) production from glucose in a medium with physiological and high extracellular K(+) concentrations. We also tested the influence of the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), on the effects elicited by arginine in order to investigate the possible participation of NO and/or its derivatives on the effects of arginine on CO(2) production from glucose. Sixty-day-old rats were treated with a single intraperitoneal injection of saline (control; group I), arginine (0.8 g/kg; group II), L-NAME (2.0 mg/kg; group III) or arginine (0.8 g/kg) plus L-NAME (2.0 mg/kg; group IV) and were killed 1 h later. Results showed that arginine administration inhibited CO(2) production from glucose at physiological extracellular K(+) concentration and L-NAME prevented such effect. In contrast, arginine administration had no effect on CO(2) production from glucose at high extracellular K(+) concentration. Based on these data, we also investigated the in vitro effect of arginine on CO(2) production from glucose in a medium with physiological extracellular K(+) concentration in hippocampus slices. Results showed that arginine (0.1-1.5 mM) when added to the incubation medium did not alter CO(2) production from glucose in hippocampus slices of untreated rats. In addition, we also demonstrated that arginine inhibits Na(+), K(+)-ATPase activity. The data indicate that the reduction of CO(2) production by arginine was probably mediated by NO and/or its derivatives, which could act inhibiting the activity of Na(+), K(+)-ATPase. The results suggest that arginine impairs energy metabolism in hippocampus slices of rats.


Assuntos
Arginina/farmacologia , Encéfalo/metabolismo , Dióxido de Carbono/metabolismo , Glucose/metabolismo , Animais , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/fisiologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
11.
Brain Res ; 1149: 210-5, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17407768

RESUMO

In the present study we investigated the in vivo (acute and chronic) and in vitro effects of proline on NTPDase and 5'-nucleotidase activities in synaptosomes obtained from cerebral cortex of rats. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. For chronic treatment, buffered proline was injected subcutaneously into rats twice a day at 10 h intervals from the 6th to the 28th day of age. Rats were killed 12 h after the last injection. Results showed that acute and chronic proline administration provoked a reduction (25%) of ATP hydrolysis, but did not alter ADP and AMP hydrolysis. We also verified the in vitro effect of proline (3.0 microM-1.0 mM) on nucleotide hydrolysis in synaptosomes from cerebral cortex of rats. In contrast to the in vivo studies, it was not observed any statistically significant alteration on ATP, ADP and AMP hydrolysis. In conclusion, according to our results, it seems reasonable to postulate that proline administration alters the hydrolysis of ATP and probably affects the responses mediated by adenine nucleotides in the central nervous system of proline treated rats.


Assuntos
Nucleotídeos de Adenina/metabolismo , Encefalopatias Metabólicas Congênitas/fisiopatologia , Córtex Cerebral/metabolismo , Prolina/metabolismo , Sinaptossomos/metabolismo , 5'-Nucleotidase/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Hidrólise , Masculino , Ratos , Ratos Wistar
12.
Neurochem Res ; 32(7): 1209-16, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17401661

RESUMO

ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system. Since the ecto-nucleotidase cascade that hydrolyzes ATP to adenosine is involved in the control of brain functions and previous studies realized in our laboratory have recently reported that acute administration of Arg decreases the NTPDase and 5'-nucleotidase activities of rat blood serum, in the present study we investigated the effect of arginine administration on NTPDase and 5'-nucleotidase activities by synaptosomes from hippocampus of rats. First, sixty-days-old rats were treated with a single or a triple intraperitoneal injection of arginine (0.8 g/Kg) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. Second, rats received an intracerebroventricular injection of 1.5 mM arginine solution or saline (5 microL) and were killed 1 h later. We also tested the in vitro effect of arginine (0.1-1.5 mM) on nucleotide hydrolysis in synaptosomes from rat hippocampus. Results showed that intraperitoneal arginine administration did not alter nucleotide hydrolysis. On the other hand, arginine administered intracerebroventricularly reduced ATP (32%), ADP (30%) and AMP (21%) hydrolysis, respectively. In addition, arginine added to the incubation medium, provoked a decrease on ATP (19%), ADP (17%) and AMP (23%) hydrolysis, respectively. Furthermore, kinetic studies showed that the inhibitory effect of arginine was uncompetitive in relation to ATP, ADP and AMP. In conclusion, according to our results it seems reasonable to postulate that arginine alters the cascade involved in the extracellular degradation of ATP to adenosine.


Assuntos
5'-Nucleotidase/metabolismo , Hipocampo/enzimologia , Hiperargininemia/enzimologia , Pirofosfatases/metabolismo , Sinaptossomos/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Hipocampo/citologia , Humanos , Masculino , Ratos , Ratos Wistar
13.
Metab Brain Dis ; 22(1): 13-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17235684

RESUMO

In the present study were evaluated the in vivo effects of arginine administration on creatine kinase (CK) activity in cerebellum of rats. We also tested the influence of antioxidants, namely alpha-tocopherol and ascorbic acid and the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), on the effects elicited by Arg in order to investigate the possible participation of nitric oxide (NO) and/or its derivatives peroxynitrite (ONOO(-)) and other/or free radicals on the effects of arginine on CK activity. Sixty-day-old rats were treated with a single i.p. injection of saline (control, group I), arginine (0.8 g/kg) (group II), L-NAME (2.0 mg/kg or 20.0 mg/kg) (group III) or Arg (0.8 g/kg) plus L-NAME (2.0 mg/kg or 20.0 mg/kg) (group IV) and were killed 1 h later. In another set of experiments, the animals were pretreated for 1 week with daily i.p. administration of saline (control) or alpha-tocopherol (40 mg/kg) and ascorbic acid (100 mg/kg). Twelve hours after the last injection of the antioxidants, the rats received one i.p. injection of arginine (0.8 g/kg) or saline and were killed 1 h later. Results showed that total and cytosolic CK activities were significantly inhibited by arginine administration in cerebellum of rats, in contrast to mitochondrial CK activity which was not affected by this amino acid. Furthermore, simultaneous injection of L-NAME (20.0 mg/kg) and treatment with alpha-tocopherol and ascorbic acid prevented these effects. The data indicate that the reduction of CK activity in cerebellum of rats caused by arginine was probably mediated by NO and/or its derivatives ONOO(-)and other free radicals. Considering the importance of CK for the maintenance of energy homeostasis in the brain, if this enzyme inhibition also occurs in hyperargininemic patients, it is possible that CK inhibition may be one of the mechanisms by which arginine is neurotoxic in hyperargininemia.


Assuntos
Arginina/toxicidade , Encefalopatias Metabólicas/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/enzimologia , Creatina Quinase/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Encefalopatias Metabólicas/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar , alfa-Tocoferol/farmacologia
14.
Int J Dev Neurosci ; 25(1): 17-22, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17197150

RESUMO

In the present study, we initially investigated the in vivo (acute and chronic) and in vitro effects of proline on cytochrome c oxidase (complex IV) activity in rat cerebral cortex to test the hypothesis that proline might alter energy metabolism and that this alteration could be provoked by oxidative stress. The action of alpha-tocopherol and ascorbic acid on the effects produced by proline was also evaluated. For acute administration, 29- and 60-day-old rats received one subcutaneous injection of proline (18.2 micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were sacrificed 1h later. For chronic treatment, proline was injected subcutaneously twice a day at 10h intervals from the 6(th) to the 28(th) day of age. Rats were sacrificed 12h (29(th)) or 31 days (60(th)) after the last injection. Results showed that acute administration of proline significantly diminished the activity of cytochrome c oxidase in the cerebral cortex of 29- and 60-day-old rats. On the other hand, chronic hyperprolinemia reduced this complex activity only on day 29, but not on the 60(th) day of life. In another set of experiments, 22-day-old rats or 53-day-old rats were pretreated for 1 week with daily intraperitoneal administration of alpha-tocopherol (40 mg/kg) and ascorbic acid (100mg/kg) or saline. Twelve hours after the last antioxidant injection, rats received a single injection of proline or saline and were killed 1h later. In parallel to chronic treatment, rats received a daily intraperitoneal injection of alpha-tocopherol and ascorbic acid from the 6(th) to the 28(th) day of life and were killed 12h after the last injection. Results showed that the pretreatment with alpha-tocopherol and ascorbic acid before acute proline administration or concomitant to chronic proline administration significantly prevented these effects. We also observed that proline (3.0 microM-1.0 mM) when added to the incubation medium (in vitro studies) did not alter cytochrome c oxidase activity. Data suggest that the inhibitory effect of proline on cytochrome c oxidase activity is possibly associated with oxidative stress and that this parameter may be involved in the brain dysfunction observed in hyperprolinemia.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Prolina/administração & dosagem , Fatores Etários , Análise de Variância , Animais , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Esquema de Medicação , Interações Medicamentosas , Ratos , Ratos Wistar , Fatores de Tempo , alfa-Tocoferol/administração & dosagem
15.
Mol Cell Biochem ; 292(1-2): 139-44, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17003951

RESUMO

The main objective of the present study was to evaluate the in vivo (acute and chronic) and in vitro effects of proline on serum nucleotide hydrolysis. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 (micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were sacrificed 1 h, 3 h or 12 h later. Results showed that acute proline administration provoked a decrease in ATP (42%) and ADP (49%) hydrolysis when rats were sacrificed 1 h after the injection. Furthermore, in rats killed 3 h and 12 h after acute injection, no change in nucleotide hydrolysis were observed. For chronic treatment, buffered proline was injected subcutaneously twice a day at 10 h intervals from the 6(th) to the 28(th) day of age. Rats were sacrificed 3 h or 12 h after the last injection. Chronic administration of proline did not alter the nucleotide hydrolysis when the rats were killed 12 h after the last injection, but decreased ATP (15%) and ADP (32%) hydrolysis when rats were sacrificed 3 h after the last injection. The in vitro effect of proline (3.0 microM - 1.0 mM) on serum nucleotide hydrolysis was also investigated; results showed that 1.0 mM of proline significantly increased ATP (45%), ADP (55%) and AMP (49%) hydrolysis. The data indicate that proline in vivo and in vitro alters nucleotide hydrolysis, which may be involved in the pathogeny of hyperprolinemic patients.


Assuntos
Nucleotídeos/sangue , Nucleotídeos/metabolismo , Prolina/farmacologia , Animais , Hidrólise/efeitos dos fármacos , Masculino , Prolina/administração & dosagem , Ratos , Ratos Wistar
16.
Cell Mol Neurobiol ; 26(2): 177-89, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16619133

RESUMO

1. We have previously demonstrated that arginine administration induces oxidative stress and compromises energy metabolism in rat hippocampus. In the present study we initially investigated the influence of pretreatment with alpha-tocopherol and ascorbic acid on the effects produced by arginine on hippocampus energy metabolism. We also tested the effect of acute administration of arginine on various parameters of energy metabolism, namely glucose uptake, lactate release and on the activities of succinate dehydrogenase, complex II and cytochrome c oxidase in rat cerebellum, as well as the influence of pretreatment with alpha-tocopherol and ascorbic acid on the effects elicited by arginine on this structure. 2. Sixty-day-old female Wistar rats were treated with a single i.p. injection of saline (control) or arginine (0.8 g/kg) and were killed 1 h later. In another set of experiments, the animals were pretreated for 1 week with daily i.p. administration of saline (control) or alpha-tocopherol (40 mg/kg) and ascorbic acid (100 mg/kg). Twelve hours after the last injection of the antioxidants the rats received one i.p. injection of arginine (0.8 g/kg) or saline and were killed 1 h later. 3. Results showed that arginine administration significantly increased lactate release and diminished glucose uptake and the activities of succinate dehydrogenase and complex II in rat cerebellum. In contrast, complex IV (cytochrome c oxidase) activity was not changed by this amino acid. Furthermore, pretreatment with alpha-tocopherol and ascorbic acid prevented the impairment of energy metabolism caused by hyperargininemia in cerebellum and hippocampus of rats.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hipocampo , Hiperargininemia/metabolismo , alfa-Tocoferol/farmacologia , Animais , Antioxidantes/administração & dosagem , Arginina/administração & dosagem , Arginina/farmacologia , Ácido Ascórbico/administração & dosagem , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Glucose/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratos , Ratos Wistar , Succinato Desidrogenase/metabolismo , alfa-Tocoferol/administração & dosagem
17.
Neurochem Res ; 29(2): 385-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15002734

RESUMO

In the present study we investigated the action of vitamins E and C on the inhibition of acetylcholinesterase and butyrylcholinesterase activities provoked by arginine in cerebral cortex and serum of 60-day-old rats. Animals were pretreated for 1 week with daily intraperitoneal administration of saline (control) or vitamins E (40 mg/kg) and C (100 mg/kg). Twelve hours after the last injection, animals received one injection of arginine (0.8 microM/g of body weight) or saline. Results showed that acetylcholinesterase and butyrylcholinesterase activities were decreased in the arginine-treated rats. Furthermore, pretreatment with vitamins E and C prevented these effects. The data indicate that the reduction of acetylcholinesterase and butyrylcholinesterase activities caused by arginine was probably mediated by oxidative stress. Assuming the possibility that these effects might also occur in the human condition, our findings may be relevant to explain, at least in part, the neurological dysfunction associated with hyperargininemia and might support a novel therapeutic strategy to slow the progression of neurodegeneration in this disorder.


Assuntos
Acetilcolinesterase/metabolismo , Arginina/farmacologia , Butirilcolinesterase/sangue , Córtex Cerebral/enzimologia , Estresse Oxidativo/fisiologia , Acetilcolinesterase/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Butirilcolinesterase/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Ratos , Ratos Wistar , Vitamina E/administração & dosagem
18.
Brain Res ; 983(1-2): 58-63, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12914966

RESUMO

Hyperargininemia is an inherited metabolic disease biochemically characterized by tissue accumulation of arginine. Mental retardation and other neurological features are common symptoms in hyperargininemic patients. Considering that the underlying mechanisms of brain damage in this disease are poorly established, in this work we investigated the effect of arginine administration to adult Wistar rats on some parameters of energy metabolism (CO(2) production, glucose uptake, lactate release and the activities of succinate dehydrogenase, complexes II and IV of the respiratory chain) in rat hippocampus. The action of L-NAME, an inhibitor of oxide nitric oxide synthase, on the effects produced by arginine was also tested. Sixty-day-old rats were treated with a single intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group III) and were killed 1 h later. Results showed that arginine administration significantly increased lactate release and diminished CO(2) production, glucose uptake, succinate dehydrogenase and complex II activities. In contrast, complex IV (cytochrome c oxidase) activity was not changed by this amino acid. Furthermore, simultaneous injection of L-NAME prevented some of these effects, except CO(2) production and lactate release. The present data indicate that in vivo arginine administration impairs some parameters of energy metabolism in hippocampus of rats probably through NO formation.


Assuntos
Arginina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hipocampo/metabolismo , Animais , Dióxido de Carbono/metabolismo , Depressão Química , Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Hipocampo/efeitos dos fármacos , Indicadores e Reagentes , Ácido Láctico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I , Ratos , Ratos Wistar , Succinato Desidrogenase/metabolismo
19.
Neurochem Int ; 43(6): 597-602, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12820989

RESUMO

Homocystinuria is an inborn error of metabolism caused by severe deficiency of cystathionine beta-synthase activity. It is biochemically characterized by tissue accumulation of homocysteine (Hcy) and methionine (Met). Homocystinuric patients present a variable degree of neurological dysfunction whose pathophysiology is poorly understood. In the present study, we investigated the in vitro effect of Hcy and Met on some parameters of energy metabolism in hippocampus of rats. CO(2) production from [U-14C] acetate, glucose uptake and lactate release were assessed by incubating hippocampus prisms from 28-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of Hcy (10-500 microM) or Met (0.2-2.0mM). Hcy and Met decreased CO(2) production in a dose-dependent manner and increased lactate release. In contrast, glucose uptake was not altered by the metabolites. The effect of Hcy and Met on cytochrome c oxidase activity was also studied. It was observed that Met did not alter this enzyme activity, in contrast with Hcy, which significantly inhibited cytochrome c oxidase activity. It is suggested that impairment of brain energy metabolism caused by the metabolites accumulating in homocystinuria may be related to the neurological symptoms present in homocystinuric patients.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Homocistinúria/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Hipocampo/metabolismo , Homocisteína/farmacologia , Metionina/farmacologia , Ratos , Ratos Wistar
20.
Metab Brain Dis ; 18(1): 79-86, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603084

RESUMO

In the present study we investigated the in vivo and in vitro effect of proline (Pro) on acetylcholinesterase (AChE) activity in rat cerebral cortex. The action of vitamins E and C on the effects produced by Pro was also tested. Twelve-day-old rats received one s.c. injection of Pro (12.8 micromol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. In another set of experiments, 5-day-old rats were pretreated for 1 week with daily i.p. administration of saline (control) or vitamins E (40 mg/kg) and C (100 mg/kg). Twelve hours after the last injection the rats received one s.c. injection of Pro (12.8 micromol/g body weight) or saline (control) and were killed 1 h later. For the in vitro studies, cerebral cortex homogenates of 12-day-old untreated rats were incubated for 1 h with various concentrations of Pro (3.0 microM-1.0 mM) or with 1.0 mM Pro, 1.0 mM trolox, or 1.0 mM Pro plus 1.0 mM trolox. Controls did not contain Pro in the incubation medium. Our results showed that the AChE activity significantly decreased (25%) in rat brain subjected to Pro administration and that the pretreatment with vitamins E and C prevented this effect. Furthermore, Pro (0.5 and 1.0 mM) also inhibits AChE activity in vitro and trolox prevented this effect. The data suggest that the inhibitory effect of Pro on AChE activity is associated with oxidative stress. Although it is difficult to extrapolate our findings to the human condition, our results may be relevant to explain, at least in part, the neurologic dysfunction associated with hyperprolinemia type II.


Assuntos
Acetilcolinesterase/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Prolina/farmacologia , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Prolina/antagonistas & inibidores , Ratos , Ratos Wistar , Vitamina E/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...